US009361335B2

a2 United States Patent
Reddy et al.

US 9,361,335 B2
Jun. 7,2016

(10) Patent No.:
(45) Date of Patent:

(54) METHODS AND APPARATUS TO MANAGE
VIRTUAL MACHINES

(71) Applicant: VMware, Inc., Palo Alto, CA (US)

(72) Inventors: Thirumalesh Reddy, San Jose, CA
(US); Sreekantha Indireddy, Cupertino,
CA (US); Shreekanth Ankala, Dublin,
CA (US); Bhavin Mathia, Santa Clara,

CA (US)

(73) Assignee: VMware, Inc., Palo Alto, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 3 days.

(21) Appl. No.: 14/315,297

(22) Filed: Jun. 25,2014

Prior Publication Data

US 2015/0106807 A1l Apr. 16, 2015

(65)

Related U.S. Application Data

Provisional application No. 61/889,971, filed on Oct.
11, 2013.

(60)

Int. Cl1.
GO6F 9/455
GO6F 9/44
GO6F 17/30
GO6F 9/50
GO6F 9/445

U.S. CL
CPC

(51)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

(52)
...... GO6F 17/30386 (2013.01); GO6F 9/45533
(2013.01); GO6F 9/5077 (2013.01); GOGF

9/44505 (2013.01)

(58) Field of Classification Search

CPC GOGF 9/44505; GOGF 9/45533; GOGF
9/5077; GOGF 17/30386
USPC ... 717/101-103, 120-121, 171-173,

717/176-178; 718/1
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

7,207,041 B2 4/2007 Elson et al.
7,647,596 B2* 1/2010 Cassorlacc....... GOG6F 9/542
719/316
8,171,485 B2 5/2012 Muller
8,346,935 B2 1/2013 Mayo et al.
8,387,060 B2 2/2013 Pirzada et al.
8,448,170 B2 5/2013 Wipfel et al.
8,458,695 B2 6/2013 Fitzgerald et al.
(Continued)
OTHER PUBLICATIONS

Open Data Center Alliance, “Open Data Center Alliance Usage
Model: Long Distance Workload Migration Rev 1.0”, 2012, Open
Data Center Alliance, Inc., retrieved from http://www.
opendatacenteralliance.org/docs/Long_ Distance Workload_ Mi-
gration_ Rev1.0_b.pdf, 21 pages.*

(Continued)

Primary Examiner — Ted T Vo

(57) ABSTRACT

Methods and apparatus to manage virtual machines are dis-
closed. An example method includes determining that a
deployment of a first virtual machine has halted because the
first virtual machine is dependent on a parameter of a second
virtual machine, detecting that the second virtual machine has
been deployed and has caused configuration information to
be stored in a repository, retrieving, via a processor, the con-
figuration information, including the parameter, from the
repository, and transmitting, via the processor, the parameter
to the first virtual machine to cause the first virtual machine to
resume deployment.

30 Claims, 15 Drawing Sheets

Cioud Manager 138

Depsrdenrcy Configuration
Controller

149

Cantroller f--+ C

| Blueprint 126
]
Depioyment Ptari
Generator 122

Administrator 126

i Director 124, E:E\
L | I aani—

~132

US 9,361,335 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,789,041 B2* 7/2014 Vermac..... GOG6F 8/63
709/226

8,910,156 B1* 12/2014 Kenchammana-
Hosekote GOGF 9/45533
718/1

8,972,980 B2 3/2015 Bangaetal.
2006/0195715 Al 8/2006 Herington
2009/0249354 Al* 10/2009 Yamaguchi GO6F 9/45
718/106
2011/0113426 Al 5/2011 Kung et al.
2012/0084445 Al 4/2012 Brock et al.
2013/0263125 Al 10/2013 Shamsee et al.

OTHER PUBLICATIONS

Open Data Center Alliance, “Open Data Center Alliance Master
Usage Model: Service Orchestration Rev 1.0”, 2012, Open Data
Center Alliance, Inc., retrieved from www.opendatacenteralliance.
org/docs/ODCA_Service_ Orch_ MasterUM_v1.0__Nov2012.pdf,
49 pages.™

Konstantinou et al., “An Architecture for Virtual Solution Composi-
tion and Deployment in Infrastructure Clouds”, 2009, ACM, 9
pages.*

United States Patent and Trademark Office, “Non-Final Office
Action.” issued in connection with U.S. Appl. No. 14/315,300 on
Aug. 18, 2015, 34 pages.

Janik et al., “Transparent Resource Management and Self-Adaptabil-
ity Using Multitasking Virtual Machine RM API”, Institute of Com-
puter Science, AGH, May 21-22, 2006, pp. 51-57, 7 pages.
Hillbrecht et al, “A SNMP-based Virtual Machines Management
Interface,” IEEE/ACM Fifth International Conference on Utility and
Cloud Computing, 2012, pp. 279-286, 8 pages.

United States Patent and Trademark Office, “Non-Final Office
Action.” issued in connection with U.S. Appl. No. 14/315,296 on
Aug. 13, 2015, 69 pages.

Dennenman, Frank, “vSphere 5.1 Storage DRS Multi-VM provision-
ing improvement”, http://frankdenneman.nl/2012/11/02/vsphere-5-
1-storage-drs-multi-vm,-provisioning-improvement/, Nov. 2, 2012,
5 pages.

United States Patent and Trademark Office, “Non-Final Office
Action.” issued in connection with U.S. Appl. No. 14/315,299 on
Aug. 28, 2015, 13 pages.

Jin, “Virtual Appliance: Is It a Virtual Machine or an Application?”,
2010, retrieved from http://www.doublecloud.org/2010/04/virtual-
appliance-is-it-a-virtual-machine-or-an-application/, 4 pages.

* cited by examiner

US 9,361,335 B2

Sheet 1 of 15

Jun. 7,2016

U.S. Patent

L "Old

21T wswuohaug

wiswihodseq LD

cel

=

AR =l e
wuswAcldsg

{

821 sueid
wswiodsg

FrAR ST
usld wswiiopdec

G171 sedoeasq

ggi wudenig

Z1 Jojeieuss
ABojodo |,

G671 Jo0aang uonedy

ddy

soday

¥El 0eT
Bopien

g% sefeuspy
annleg

¥l
Jsilonuos
uopembyued

aoT sebeuepy pnoiD

vl
IBONUsH
Rauspusdag

/l@g

U.S. Patent

140
N\

Jun. 7,2016

Wait Request
Manager 202

Sheet 2 of 15

US 9,361,335 B2

Notify Request
Manager 208

Wait Dataslore
Manager 204

inventory
Manager 206

144 —

Asset Notice
Receiver 302

FIG. 2

Motify Datastore
Manager 210

Configuration
Refiriever 308

Information
Collector 304

FIG. 3

Inventory Interface
308

inventory User
interface
Generator 310

U.S. Patent Jun. 7, 2016 Sheet 3 of 15 US 9,361,335 B2

(START)
ﬂ 402
RECEIVE WAIT REQUEST? f
NO

é YES

404
INSERT WAIT RECORD IN WAIT DATASTORE =

.

QUERY INVENTORY FOR WORKLOADS [N WAIT o~ 408
DATABASE

é 408
m----—< MATCH FOUND? 5
& NO

$ YES

QUERY NOTIFY DATABASE FOR NOTIFICATION FROM .— 410
ASSET

.

412
‘...................‘.< MATCH FOUND? §
NO
é YES

NOTIFY WAITING INSTALL

.

{ END);

414

FIG. 4

U.S. Patent Jun. 7, 2016 Sheet 4 of 15 US 9,361,335 B2

(START),
1 502
RECEIVE NOTIFICATION? }i
NO
é YES
— 504
INSERT NOTIFICATION IN NOTIFY DATASTORE
(END),
FIG. 5
(START),
»é’ 602
RECEIVE REPORT OF NEW ASSET? §
NO
$ YES
— 604
CAPTURE ASSET INFORMATION

é

STORE ASSET INFORMATION IN CONFIGURATION | — 606
REPOSITORY

;

(END)
FIG. 6

US 9,361,335 B2

Sheet 5 of 15

Jun. 7,2016

U.S. Patent

L 9O

AONIANTGIAG JOd NOULVENDIENOD TiNd

S3A %

SOINZOTY AJLLON

-

183N03Y LIYAM GN3S

S3A ﬂ

LHIDDIML ADNIANIHFA

)

>

ON
(E
S3A %
VOZ % SALTIANGD
TIVLSNI
b1l o

te

NOILVANDIANGD OGNV NOLLYTIVYASNI NiS3d

3

LE3N0TY ONPIOVHL 1388V ON3&

i

{ 1MVLS).

US 9,361,335 B2

Sheet 6 of 15

Jun. 7,2016

U.S. Patent

8 9OId

018 —"

NOILYHN2IHINOD HSNd

i

18S3N03Y AJILON GNIS

SHA %

LAFAOORL AJILON

)

$3A w

fon
PR

¢3L314W00
TIVISNI

>

{ON

f

NOLLYHNOIINOD ONY NOILYTIVLSNI NiD3g

4

1S3N0IY ONMOVYL 1388V ANIS

!

(1MVLS);

US 9,361,335 B2

Sheet 7 of 15

Jun. 7,2016

U.S. Patent

¥

NOLLONNA IX3N 153748

6 "Old
{ aNg)
4
SIA |
. /OZ
W ¢SNOILONNS TYNOILIOQY)
016 — i
NOLLONN S GFLOTTES 40 NOILYDI4ILNIT]
806 | HIANN AVIGSIO OL SANIHOVIN AV TdSIA)
i Z16
AMOLISOdIM NOILYHNDIHANCD WO¥
906 —1 NOILONMH GALDFTIS HO- SANIHOVIN SATNLTY
4
NOLLONMIA 18314 103738
08 -
4
S3A _
ON
W 1S3NDTH AHOLNIANI IAIZOTY
206 y
-
(1MVIS)

U.S. Patent

148
N

Jun. 7,2016

Profile Designer
1008

Sheet 8 of 15

US 9,361,335 B2

Request Receiver
1002

Profile
Lii)itastore
3

006

FIG. 10

Frofile Retriever
1004

Service Executor
1010

U.S. Patent Jun. 7, 2016 Sheet 9 of 15 US 9,361,335 B2

(START)
— 1102
CREATE NEW PROFILE

;

1104
RETRIEVE LIST OF TASKS FOR PROVISIONING 4

;

~ 1106
MAP SELECTED SERVICES TO TASKS
1108
STORE PROFILE IN PROFILE DATASTORE
(END),

FIG. 11

U.S. Patent Jun. 7, 2016 Sheet 10 of 15 US 9,361,335 B2

(START),

Di 1202

RECEIVE PROVISIONING REQUEST? §

NO
é YES

1204

DETERMINE SELECTED PROFILE =
|~ 1206

RETRIEVE SERVICE FOR PROFILE AND TASK

1208

EXECUTE SERVICE a
¥ —1210

‘73< ADDITIONAL TASKS?
l NO

END 3

P

FIG. 12

361,335 B2

9

US9

Sheet 11 of 15

Jun. 7,2016

U.S. Patent

¢l old

361,335 B2

9

US9

Sheet 12 of 15

Jun. 7,2016

U.S. Patent

P 9l

— Q0¥

361,335 B2

9

US9

Sheet 13 of 15

Jun. 7,2016

U.S. Patent

1 "Oid

suiis SRy

0051

361,335 B2

9

US9

Sheet 14 of 15

Jun. 7,2016

U.S. Patent

b W

E T

U.S. Patent

RANDOM
ACCESS
MEMORY

.

N 1722

1716

READ ONLY
MEMORY

PROCESSOR

LOCAL

Jun. 7,2016

Sheet 15 of 15

1728 E

MASS
STORAGE

DEVICE(S)

$ 1720

|
INPUT |
|
|

INTERFACE 4FMMT4>

% 1724

OUTPUT
DEVICE(S)

MEMORY
- 4713

N 1732

\ INSTRUCTIONS /

US 9,361,335 B2

1726

NETWORK

N e

US 9,361,335 B2

1
METHODS AND APPARATUS TO MANAGE
VIRTUAL MACHINES

RELATED APPLICATION

This patent claims the benefit of U.S. Provisional Patent
Application Ser. No. 61/889,971, filed on Oct. 11, 2013,
entitled “METHODS AND APPARATUS TO MANAGE A
VIRTUAL CLOUD ENVIRONMENT.” U.S. Provisional
Patent Application Ser. No. 61/889,971 is hereby incorpo-
rated herein by reference in its entirety.

FIELD OF THE DISCLOSURE

This disclosure relates generally to virtual computing, and,
more particularly, to methods and apparatus to manage virtual
machines.

BACKGROUND

Virtualizing computer systems provides benefits such as
the ability to execute multiple computer systems on a single
hardware computer, replicating computer systems, scalabil-
ity, moving computer systems among multiple hardware
computers, and so forth. Example systems for virtualizing
computer systems and/or managing virtualized computer
systems are described in U.S. patent application Ser. No.
11/903,374, entitled “METHOD AND SYSTEM FOR
MANAGING VIRTUAL AND REAL MACHINES;,” filed
Sep. 21, 2007, and granted as U.S. Pat. No. 8,171,485, U.S.
Provisional Patent Application Ser. No. 60/919,965, entitled
“METHOD AND SYSTEM FOR MANAGING VIRTUAL
AND REAL MACHINES,” filed Mar. 26, 2007, and U.S.
patent application Ser. Nos. 14/105,066, 14/105,069, and
14/105,072, entitled “METHODS AND APPARATUS FOR
VIRTUALIZED COMPUTING;,” filed Dec. 12, 2012, all of
which are hereby incorporated herein by reference in their
entirety.

“Infrastructure-as-a-Service” (also commonly referred to
as “TaaS”) generally describes a suite of technologies pro-
vided by a service provider as an integrated solution to allow
for elastic creation of a virtualized, networked, and pooled
computing platform (sometimes referred to as a “cloud com-
puting platform™). Enterprises may use laaS as a business-
internal organizational cloud computing platform (some-
times referred to as a “private cloud”) that gives an
application developer access to infrastructure resources, such
as virtualized servers, storage, and networking resources. By
providing ready access to the hardware resources required to
run an application, the cloud computing platform enables
developers to build, deploy, and manage the lifecycle ofa web
application (or any other type of networked application) at a
greater scale and at a faster pace than ever before.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of an example system constructed
in accordance with the teachings of this disclosure for man-
aging a cloud computing platform.

FIG. 2 is a block diagram of an example implementation of
the dependency controller of FIG. 1.

FIG. 3 is a block diagram of an example implementation of
the configuration controller of FIG. 1.

FIGS. 4-5 are flowcharts representative of example
machine readable instructions that may be executed to imple-
ment the dependency controller of FIGS. 1 and/or 2.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIGS. 6 and 9 are flowcharts representative of example
machine readable instructions that may be executed to imple-
ment the configuration controller of FIGS. 1 and/or 3.

FIGS. 7-8 are flowcharts representative of example
machine readable instructions that may be executed during
provisioning of a virtual machine blueprint in accordance
with the methods and apparatus disclosed herein.

FIG. 10 is a block diagram of an example implementation
of the service manager of FIG. 1.

FIGS. 11-12 are flowcharts representative of example
machine readable instructions that may be executed to imple-
ment the service manager of FIGS. 1 and/or 10.

FIG. 13-16 illustrate graphical user interfaces for manag-
ing and executing profile tasks.

FIG. 17 is a block diagram of an example processing plat-
form capable of executing the example machine readable
instructions of FIGS. 4-9 and/or 11-12 to implement the
example cloud manager of FIGS. 1, 2, 3, and/or 10.

DETAILED DESCRIPTION

Cloud computing platforms provide many powerful capa-
bilities for performing computing operations. However, tak-
ing advantage of these computing capabilities manually may
be complex and/or require significant training and/or exper-
tise. Methods and apparatus disclosed herein facilitate the
management of virtual machine resources in, for example,
cloud computing platforms. For example, as disclosed in
detail herein, methods and apparatus disclosed herein provide
for automation of management tasks such as provisioning
multiple virtual machines in parallel for a multiple-machine
computing system (e.g., a group of servers that inter-operate),
sharing configuration information among virtual machines as
they are provisioned, storing configuration information link-
ing virtual machines with their designated workload, and
dynamically attaching services to virtual machines based on
a selected profile or service level. The improvements to cloud
management systems (e.g., the vCloud Automation Center
(vCAC) from VMware®), interfaces, portals, etc. disclosed
herein may be utilized individually and/or in any combina-
tion. For example, all or a subset of the described improve-
ments may be utilized.

FIG. 1 depicts an example system 100 constructed in accor-
dance with the teachings of this disclosure for managing a
cloud computing platform. The example system 100 of FIG.
1 includes an application director 106 and a cloud manager
138 to manage a cloud computing platform provider 110 as
described in more detail below. As described herein, the
example system 100 facilitates management of the cloud
provider 110 and does not include the cloud provider 110.
Alternatively, the system 100 could be included in the cloud
provider 110.

The cloud computing platform provider 110 provisions
virtual computing resources (e.g., virtual machines, or
“VMs,” first virtual machine 114A, second virtual machine
114B, third virtual machine 114C) that may be accessed by
users of the cloud computing platform 110 (e.g., users asso-
ciated with an administrator 116 and/or a developer 118)
and/or other programs, software, device, etc.

An example application 102 of FIG. 1 includes multiple
VMs 114. The example VMs 114 of FIG. 1 provide different
functions within the application 102 (e.g., services, portions
of'the application 102, etc.). One or more of the VMs 114 of
the illustrated example are customized by an administrator
116 and/or a developer 118 of the application 102 relative to
a stock or out-of-the-box (e.g., commonly available pur-
chased copy) version of the services and/or application com-

US 9,361,335 B2

3

ponents. Additionally, the services executing on the example
VMs 114 may have dependencies on other ones of the VM
114.

As illustrated in FIG. 1, the example cloud computing
platform provider 110 may provide multiple deployment
environments 112, for example, for development, testing,
staging, and/or production applications. The administrator
116, the developer 118, other programs, and/or other devices
may access services from the cloud computing platform pro-
vider 110, for example, via REST (Representational State
Transfer) APIs (Application Programming Interface) and/or
via any other client-server communication protocol. Example
implementations of a REST API for cloud computing ser-
vices include a vCloud Administrator Center (vVCAC) APTand
a vCloud Director API available from VMware, Inc. The
example cloud computing platform provider 110 of FIG. 1
provisions virtual computing resources (e.g., the VMs 114) to
provide the deployment environments 112 in which the
administrator 116 and/or developer 118 can deploy multi-tier
application(s). An example implementation of a deployment
environment that may be used to implement the deployment
environments 112 of FIG. 1 is vCloud Datacenter cloud com-
puting services available from VMware, Inc.

The example application director 106 of FIG. 1, which may
be running in one or more VMs, orchestrates deployment of
multi-tier applications onto one of the example deployment
environments 112. As illustrated in FIG. 1, the example appli-
cation director 106 includes a topology generator 120, a
deployment plan generator 122, and a deployment director
124.

The example topology generator 120 generates a basic
blueprint 126 that specifies a logical topology of an applica-
tion to be deployed. The example basic blueprint 126 of FI1G.
1 generally captures the structure of an application as a col-
lection of application components executing (or to be
executed) on virtual computing resources. For example, the
basic blueprint 126 generated by the example topology gen-
erator 120 for an online store application may specify a web
application (e.g., in the form of a Java web application archive
or “WAR?” file comprising dynamic web pages, static web
pages, Java servlets, Java classes, and/or other property, con-
figuration and/or resources files that make up a Java web
application) executing on an application server (e.g., Apache
Tomcat application server) that uses a database (e.g., Mon-
goDB) as a data store. As used herein, the term “application”
generally refers to a logical deployment unit, comprised of
one or more application packages and their dependent
middleware and/or operating systems. Applications may be
distributed across multiple VMs. Thus, in the example
described above, the term “application” refers to the entire
online store application, including application server and
database components, rather than just a particular web appli-
cation itself (e.g., a database application). In some instances,
the application may include the underlying hardware (e.g.,
virtual computing hardware) utilized to implement the com-
ponents.

The example basic blueprint 126 of FIG. 1 may be
assembled from items (e.g., templates) from a catalog 130.
The example catalog 130 of FIG. 1 is a listing of available
virtual computing resources (e.g., VMs, networking, storage)
that may be provisioned from the cloud computing platform
provider 110 and available application components (e.g.,
software services, scripts, code components, application-spe-
cific packages) that may be installed on the provisioned vir-
tual computing resources. The example catalog 130 may be
pre-populated and/or customized by an administrator 116
(e.g., IT or system administrator) that enters in specifications,

10

15

20

25

30

35

40

45

50

55

60

65

4

configurations, properties, and/or other details about items in
the catalog 130. Based on the application, the example blue-
prints 126 may define one or more dependencies between
application components to indicate an installation order of the
application components during deployment. For example,
since a load balancer usually cannot be configured until a web
application is up and running, the developer 118 may specify
a dependency to execute the load balancer from an Apache
service to an application code package.

The example deployment plan generator 122 of the
example application director 106 of FIG. 1 generates a
deployment plan 128 based on the basic blueprint 126 that
includes deployment settings for the basic blueprint 126 (e.g.,
virtual computing resources’ cluster size, CPU, memory, net-
works) and an execution plan of tasks having a specified order
in which virtual computing resources are provisioned and
application components are installed, configured, and/or
started. The deployment plan 128 may be referred to as a
“global deployment plan.” The example deployment plan 128
of FIG. 1 provides an IT administrator with a process-ori-
ented view of the basic blueprint 126 that indicates discrete
actions to be performed to deploy the application. Multiple
different deployment plans 128 may be generated from a
single basic blueprint 126 to test prototypes (e.g., new appli-
cation versions), to scale up and/or scale down deployments,
and/or to deploy the application to different deployment envi-
ronments 112 (e.g., testing, staging, production). Once the
VMs 114 are created, portions of the deployment plan 128 are
separated and distributed to the VMs 114 as a plurality of
local deployment plans. Each of the local deployment plans
comprises one or more (e.g., a series of) tasks to be executed
by one or more of the VMs 114 provisioned from the deploy-
ment environment 112. Each VM 114 coordinates execution
of’its respective task(s) with a centralized deployment module
(e.g., the deployment director 124) to ensure that tasks are
executed in an order that complies with dependencies speci-
fied in the application blueprint 126.

The example deployment director 124 of FIG. 1 executes
the deployment plan 128 by communicating with the cloud
computing platform provider 110 via a cloud interface 132 to
provision and configure the VMs 114 in the deployment envi-
ronment 112. The example cloud interface 132 of FIG. 1
provides a communication abstraction layer by which the
application director 106 of the illustrated example communi-
cates with a heterogeneous mixture of cloud provider 110 and
deployment environments 112. The deployment director 124
of the illustrated example provides each VM 114 with a
respective local deployment plan specifying series of tasks
specific to the receiving VM 114. Tasks are executed by the
VMs 114 to install, configure, and/or start one or more appli-
cation components. For example, a task may be a script that,
when executed by a VM 114, causes the VM 114 to retrieve
and install particular software packages from a central pack-
age repository 134. The example deployment director 124 of
FIG. 1 coordinates with the VMs 114 to execute the tasks in an
order that observes installation dependencies (if any)
between the VMs 114 according to the global deployment
plan 128. After the application has been deployed, the appli-
cation director 106 of the illustrated example may monitor
and/or modify (e.g., scale) the deployment.

The example cloud manager 138 of FIG. 1 interacts with
the components of the system 100 (e.g., the application direc-
tor 106) and/or the environment of use (e.g., the cloud pro-
vider 110) to facilitate the management of the resources of the
cloud provider 110. In the example of FIG. 1, the cloud
manager 138 includes a dependency controller 140, a depen-
dency database 142, a configuration controller 144, a con-

US 9,361,335 B2

5

figuration repository 146, and a service manager 148. Insome
examples, the cloud manager 138 additionally includes other
components for managing a cloud environment. In some
examples, components of the cloud manager 138 and, more
generally, the cloud manager 138 are utilized to manage vir-
tual machine systems that are not associated with a cloud.

When virtual machines are deployed as part of a group
(e.g., an e-commerce application comprising a web server
virtual machine, a financial virtual machine, and a database
virtual machine), the deployment of a first virtual machine
may depend upon the deployment of a second virtual
machine. For example, if the first virtual machine 114A is a
web server virtual machine and the second virtual machine
114B is a database virtual machine, the first virtual machine
114A needs to await information (e.g., network location,
authentication parameters, etc.) about the second virtual
machine 114B before provisioning can be completed.
Accordingly, provisioning of the first virtual machine 114A
will be delayed until the second virtual machine is provi-
sioned. The example dependency controller 140 of the illus-
trated example stores information about the dependency of
virtual machine resources in the dependency database 142
and coordinates the provisioning of the resources based on the
stored dependency information to facilitate the parallel
deployment of dependent virtual machines. In other words,
according to this example, the deployment of the first virtual
machine and deployment of the second virtual machine may
be performed in parallel (e.g., deployment of the first and
second virtual machines may be initiated at substantially the
same time) and the deployments may be halted as needed to
ensure that the second virtual machine is sufficiently
deployed by the time that the first virtual machine requires the
second virtual machine to exist, be accessible, provide infor-
mation, etc. (e.g., because the first virtual machine is depen-
dent on the second virtual machine).

According to the foregoing example, the first virtual
machine 114A is instrumented with an instruction to await
availability of a deployed database (e.g., the second virtual
machine 114B in the identified example) by sending a wait
request to the dependency controller 140. The dependency
controller 140 of the illustrated example stores information
about the wait request in the example dependency database
142. The instruction causes the deployment of the first virtual
machine 114 A to be automatically placed on hold at the point
(e.g., just prior to) in the deployment where the database
information is needed (or about to be needed). Thus, deploy-
ment of the first virtual machine 114A can be started without
regard for the status of the deployment of the second virtual
machine 114B. For example, the deployment of the first vir-
tual machine 114A can be started at the same time as the
deployment of the second virtual machine 114B, can be
started prior to the deployment of the second virtual machine
114B, etc. Accordingly, when deployment of the first virtual
machine 114A and deployment of the second virtual machine
114B are handled by different persons, these persons do not
need to coordinate the start of deployment. Additionally,
regardless of how many persons are involved in the deploy-
ment of the virtual machines under the global deployment
plan, by starting deployment of the first virtual machine 114A
prior to completion of the deployment of the second virtual
machine 114B, any deployment tasks that can be completed
without the need for information about the second virtual
machine 114B can be started such that many deployment
tasks can be completed prior to the completion of the deploy-
ment of the second virtual machine 114B. Parallelizing
deployment in this fashion saves time and, thus, costs.

20

40

45

6

According to the foregoing example, the second virtual
machine 114B is instrumented with an instruction to send a
notify request to the example dependency controller 140 of
FIG. 1 when deployment of the second virtual machine 114B
is completed (or reaches a point at which the deployment
controller 140 can allow the deployment of the first virtual
machine 114A to continue). When the example dependency
controller 140 receives the notify request, the dependency
controller 140 locates a matching wait request in the depen-
dency database 142 of the illustrated example and sends a
notification to the first virtual machine 114A that it may
continue deploying (e.g., may continue executing a deploy-
ment plan (e.g., a local deployment plan)).

The dependency database 142 of the illustrated example
stores information about wait requests and notify requests for
deployments of virtual machines. The example dependency
database 142 is a database that includes a table of wait
requests, a table of notify requests, and a table of master keys
that link wait requests with a corresponding notify requests.
Alternatively, the dependency database 142 may be imple-
mented by any other type of data storage. For example, the
dependency database 142 may be implemented by multiple
databases, by one or more files, and/or by any combination of
data storage components.

The configuration controller 144 of the illustrated example
collects and stores configuration information about virtual
machines in the configuration repository 146. When virtual
machines are deployed, the virtual machines transmit an asset
tracking request to the configuration controller 144. In
response to the asset tracking requests, the example configu-
ration controller 144 captures asset information from the
requesting virtual machine and stores the information in the
configuration repository 146. In the illustrated example, the
configuration controller 144 retrieves a virtual machine
name, a network address, a role for the virtual machine, a
unique identifier for the virtual machine, a deployment num-
ber for the virtual machine, and an identification of a work-
load for the virtual machine. A workload, as used herein, is an
abstraction of the work that an application instance or a set of
applications instances are to perform. For example, a work-
load may be implementing a web server, implementing a web
server farm, implementing a multilayer application, etc.

The configuration controller 144 of the illustrated example
provides configuration information retrieved from the con-
figuration repository 146 to requesting virtual machines. For
example, if the first virtual machine 114 A is dependent on the
deployment of the second virtual machine 114B, once the first
virtual machine 114A is notified by the dependency control-
ler 140 that the claimant of the second virtual machine 114B
has completed, the first virtual machine 114 A sends a request
for configuration information of the second virtual machine
114B to the configuration controller 144. In response, the
configuration controller 144 retrieves configuration informa-
tion for the second virtual machine 114B from the configu-
ration repository 146 and transmits the retrieved configura-
tion information to the first virtual machine 114A.

The example configuration controller 144 of the illustrated
example additionally provides a user interface (e.g., a graphi-
cal user interface) identifying the assets for which configura-
tion information is included in the configuration repository
146. According to the illustrated example, the configuration
controller 144 generates a graphical user interface listing the
assets in the configuration repository 146 (e.g., in a tree
structure) based on the workload of each of the assets. The
example graphical user interface generated by the configura-
tion controller 144 of FIG. 1 displays a workload followed by
a collapsible list of the assets associated with that workload.

US 9,361,335 B2

7

For example, if the first virtual machine 114A and the third
virtual machine 114C are associated with a web server, and
the second virtual machine 114B is associated with a database
server, the configuration controller 144 may display a first
node for the web server followed by a collapsible list includ-
ing the first virtual machine 114A and the third virtual
machine 114C and a second node for the database server
followed by a collapsible list including the third virtual
machine 114B.

The configuration repository 146 of the illustrated example
stores configuration information for virtual machines that is
collected by the configuration controller 144. The example
configuration repository 146 is implemented by a lightweight
directory access protocol (LDAP) database. Alternatively, the
configuration repository 146 may be implemented by any
other type(s) of data storage. For example, the configuration
repository 146 may be implemented by any other type(s) of
database, by multiple databases, by one or more files, and/or
by any combination of data storage components.

The service manager 148 of the illustrated example man-
ages the deployment of virtual machines (e.g., virtual
machine blueprints) according to assigned service levels
identified in a profile. Example profiles identify various ser-
vices to be utilized by deployed virtual machines and associ-
ate levels of those services to profiles. A service may be any
task, resource, or plugin to be utilized by a virtual machine
(e.g., network services, plugins, and/or resources; storage
services, plugins, and/or resources; domain name services,
plugins, and/or resources; database services, plugins, and/or
resources; monitoring services, plugins, and/or resources;
load balancing services, plugins, and/or resources; security
services, plugins, and/or resources; etc.). Levels of the ser-
vices may be associated with various costs and/or resource
utilization levels. For example, three profiles may be utilized:
gold, silver, and bronze. For each of the profiles, services of
different levels (e.g., different costs) may be assigned. For
example, a gold profile may be linked to 10 gigabit network
services (e.g., most expensive services), a silver profile may
be linked to 1 gigabit network services (e.g., mid-priced ser-
vices), and a bronze profile may be linked to 100 megabit
network services (e.g., lowest cost services). The example
service manager 148 of FIG. 1 provides a user interface for
creation of the profiles; adding services, resources, and/or
plugins to the profiles; and displaying information about the
profiles (e.g., cost, utilization information, etc.). Access to the
profile configuration of the service manager 148 may be
limited by authorization levels. For example, a highest level
of access may allow the design and configuration of
profile(s), a mid-level access may allow the assignment of
virtual machines (e.g., by linking blueprints with a profile),
and a lowest level access may allow deployment of blueprints
linked to a profile. Accordingly, at the lowest level of access,
the profile for a blueprint may not be changed and, thus, the
deployment will be limited to the services, resources, and/or
plugins assigned to that blueprint. Thus, the service manager
148 may facilitate cost and resources control in a cloud envi-
ronment or other distributed deployment of virtual machines.

FIG. 2 is a block diagram of an example implementation of
the dependency controller 140 of FIG. 1. The example depen-
dency controller 140 of FIG. 2 includes a wait request man-
ager 202, a wait datastore manager 204, an inventory manager
206, a notify request manager 208, and a notify datastore
manager 210.

The wait request manager 202 of the illustrated example
receives wait requests sent during the provisioning of virtual
machines. The wait request manager 202 transmits the
received requests to the wait datastore manager 204. The

10

15

20

25

30

35

40

45

50

55

60

65

8

example wait request manager 202 additionally requests
inventory information about virtual machine assets from the
inventory manager 206. For example, when a wait request is
received, the wait request manager 202 of the illustrated
example requests that the inventory manager 206 provide
information about a virtual machine asset stored in the con-
figuration repository 146 that matches the wait request. For
example, the wait request may include information identify-
ing a workload and/or a key field that identifies a virtual
machine asset that can fulfill the wait request (e.g., a key
identifying a type of database server that must be provisioned
prior to completing provisioning of the virtual machine that
sent the wait request). When the example wait request man-
ager 202 of FIG. 2 determines that a matching provisioned
asset already exists or the wait request manager 202 deter-
mines that a notification for a matching provisioned asset is
available by querying the notify datastore manager 210, the
wait request manager 202 of the illustrated example notifies
the virtual machine that sent the wait request that provision-
ing may continue.

The wait datastore manager 204 of the illustrated example
receives information about wait requests from the wait
request manager 202 and stores the wait request information
in a table of wait requests in the example dependency data-
base 142. The wait datastore manager 204 of the illustrated
example additionally retrieves information about pending
wait requests so that the wait request manager 202 can query
the inventory manager 206 and/or the notify datastore man-
ager 210 to determine if any wait requests have been fulfilled.
When a wait request has been fulfilled, the wait datastore
manager 204 of the illustrated example removes the wait
request from the dependency database 142.

The inventory manager 206 of the illustrated example
receives and processes requests for asset information in the
example configuration repository 146. In the illustrated
example, the inventory manager 206 receives query param-
eters such as a workload name and/or key field from the wait
request manager 202 and performs an LDAP query of the
example configuration repository using the received query
parameters. Alternatively, the inventory manager 206 may
perform any other type(s) of query(s) to retrieve available
information from the configuration repository 146.

The example notify request manager 208 of FI1G. 2 receives
notify requests during the provisioning of virtual machines
that have been instrumented to transmit the notify request.
The notify request manager 208 of the illustrated example
sends the notify requests to the notify datastore manager 210
for storage in the dependency database 142. The example
notify request manager 208 may additionally validate the
notify request. For example, if the notify request indicates
that a particular service is provisioned (e.g., a database ser-
vice), the notify request manager 208 may validate that the
database service is available by attempting to access the data-
base service, may verify that information about the database
service has been entered into the configuration repository
146, etc.

The notify datastore manager 210 of the illustrated
example receives notify requests from the notify request man-
ager 208 and stores the notify requests in a table of notify
requests in the dependency database 142. Additionally, the
notify datastore manager 210 of this example queries the
dependency database 142 for notify requests in response to a
request from the wait request manager 202 attempting to
determine if a wait request has been satisfied by a notify
request. According to the illustrated example, when a wait
request has been fulfilled, the corresponding notify request
remains in the dependency database 142 (e.g., where further

US 9,361,335 B2

9

virtual machines may rely on the notify request). Alterna-
tively, when a wait request has been fulfilled, the notify datas-
tore manager 210 may remove the corresponding notify
request from the dependency database 142 (e.g., once the
notify datastore manager 210 determines that there are no
further virtual machines that rely on the notify request).

FIG. 3 is a block diagram of an example implementation of
the configuration controller 144 of FIG. 1. The example con-
figuration controller 144 of this example includes a notice
receiver 302, an information collector 304, an inventory inter-
face 306, a configuration retriever 308, and an inventory user
interface generator 310.

The asset notice receiver 302 of the illustrated example
receives reports of new virtual machine assets. For example,
during provisioning of virtual machines, the virtual machines
may be instrumented with an instruction to transmit an asset
notice to the asset notice receiver 302. The asset notice
receiver 302 sends the asset notice to the information collec-
tor 304 of the illustrated example.

In response to receiving an asset notice from the example
asset notice receiver 302, the information collector 304 of the
illustrated example retrieves asset information (e.g., configu-
ration information, settings, identification information, etc.)
from the virtual machine that transmitted the asset notice.
Alternatively, asset information may be retrieved from any
other location or device that carries the asset information. For
example, the information collector 304 may retrieve a name
for the virtual machine, a workload associated with the virtual
machine, a network address of the virtual machine, the unique
identifier for the virtual machine, a deployment identifier,
user credentials, information about services available at the
virtual machine, etc. The example information collector 304
transmits the collected information to the inventory interface
306 for storage in the configuration repository 146.

The inventory interface 306 of the illustrated example
receives information collected by the example information
collector 304 and stores the information in the example con-
figuration repository 146. The example inventory interface
306 of FIG. 3 retrieves information from the example con-
figuration repository 146 in response to requests from the
example configuration retriever 308 and/or the example
inventory user interface generator 310. The inventory inter-
face 306 of the illustrated example interfaces with the con-
figuration repository 146 using LDAP. Alternatively, any
other interface and/or protocol may be utilized for accessing
the configuration repository 146.

The configuration retriever 308 of the illustrated example
receives requests for configuration information on virtual
machines and retrieves the requested configuration informa-
tion via the example inventory interface 306. For example,
after the first virtual machine 114A has been notified that the
second virtual machine 114B has been provisioned, the first
virtual machine 114A transmits a request to the configuration
retriever 308 requesting configuration information for the
second virtual machine 114B. For example, the first virtual
machine 114A may request configuration information that
includes a network address for the second virtual machine
144B so that the first virtual machine 114A may configure
installed applications and/or services to access a resource at
the second virtual machine 114B once the first virtual
machine 114A has been provisioned.

The inventory user interface generator 310 of the illus-
trated example receives user requests for asset inventory
information and provides a user interface to provide the asset
information. The example inventory user interface generator
310 of FIG. 3 lists asset information in a hierarchical tree
(e.g., as nodes nested in other nodes). According to the illus-

25

40

45

50

10

trated example, asset information is displayed in a graphical
user interface that provides a collapsible list of virtual
machine assets (e.g., graphically displayed nodes) under-
neath (e.g., nested in) an identification of the workload (e.g.,
a graphically displayed node for the workload) to which the
asset is assigned. Accordingly, even if the virtual machine
name is not descriptive or is unknown to the user, the work-
load to which the virtual machine belongs is readily ascer-
tainable.

While example manners of implementing the dependency
controller 140 and the configuration controller 144 of the
cloud manager 138 are illustrated in FIGS. 1-3, one or more of
the elements, processes and/or devices illustrated in FIGS.
1-3 may be combined, divided, re-arranged, omitted, elimi-
nated and/or implemented in any other way. Further, the
example wait request manager 202, the example wait data-
base manager 204, the example inventory manager 206, the
example notify request manager 208, the example notify
datastore manager 210 of FIG. 2, the example dependency
controller 140, the example asset notice receiver 302, the
example information collector 304, the example inventory
interface 306, the example configuration retriever 308, the
example inventory user interface generator 310 of FIG. 3
and/or the example configuration controller 144 may be
implemented by hardware, software, firmware and/or any
combination of hardware, software and/or firmware. Thus,
for example, any of the example wait request manager 202,
the example wait database manager 204, the example inven-
tory manager 206, the example notify request manager 208,
the example notify datastore manager to 210 of F1G. 2 and/or
the example dependency controller 140, the example asset
notice receiver 302, the example information collector 304,
the example inventory interface 306, the example configura-
tion retriever 308, the example inventory user interface gen-
erator 310 of FIG. 3 and/or the example configuration con-
troller 144 could be implemented by one or more analog or
digital circuit(s), logic circuits, programmable processor(s),
application specific integrated circuit(s) (ASIC(s)), program-
mable logic device(s) (PLD(s)) and/or field programmable
logic device(s) (FPLD(s)). When reading any ofthe apparatus
or system claims of this patent to cover a purely software
and/or firmware implementation, at least one of the example,
wait request manager 202, the example wait database man-
ager 204, the example inventory manager 206, the example
notify request manager 208, the example notify datastore
manager to 210 of FIG. 2, the example dependency controller
140, the example asset notice receiver 302, the example infor-
mation collector 304, the example inventory interface 306,
the example configuration retriever 308, the example inven-
tory user interface generator 310 of FIG. 3, and/or the
example configuration controller 144 is/are hereby expressly
defined to include a tangible computer readable storage
device or storage disk such as a memory, a digital versatile
disk (DVD), a compact disk (CD), a Blu-ray disk, etc. storing
the software and/or firmware. Further still, the example cloud
manager 138, the example dependency controller 140, and/or
the example configuration controller 144 of FIG. 1-3 may
include one or more elements, processes and/or devices in
addition to, or instead of, those illustrated in FIGS. 1-3, and/or
may include more than one of any or all of the illustrated
elements, processes and/or devices.

A flowchart representative of example machine readable
instructions for implementing the cloud manager 138, the
dependency controller 140, and/or the configuration control-
ler 144 of FIGS. 1-3 are shown in FIGS. 4-9. In these
examples, the machine readable instructions comprise a pro-
gram for execution by a processor such as the processor 1712

US 9,361,335 B2

11

shown in the example processor platform 1700 discussed
below in connection with FIG. 17. The program may be
embodied in software stored on a tangible computer readable
storage medium such as a CD-ROM, a floppy disk, a hard
drive, a digital versatile disk (DVD), a Blu-ray disk, or a
memory associated with the processor 1712, but the entire
program and/or parts thereof could alternatively be executed
by a device other than the processor 1712 and/or embodied in
firmware or dedicated hardware. Further, although the
example program is described with reference to the flow-
charts illustrated in FIGS. 4-9, many other methods of imple-
menting the example cloud manager 138, the example depen-
dency controller 140, and/or the example configuration
controller 144 may alternatively be used. For example, the
order of execution of the blocks may be changed, and/or some
of'the blocks described may be changed, eliminated, or com-
bined.

As mentioned above, the example processes of FIGS. 4-9
may be implemented using coded instructions (e.g., computer
and/or machine readable instructions) stored on a tangible
computer readable storage medium such as a hard disk drive,
a flash memory, a read-only memory (ROM), a compact disk
(CD), a digital versatile disk (DVD), a cache, a random-
access memory (RAM) and/or any other storage device or
storage disk in which information is stored for any duration
(e.g., for extended time periods, permanently, for brief
instances, for temporarily buffering, and/or for caching of the
information). As used herein, the term tangible computer
readable storage medium is expressly defined to include any
type of computer readable storage device and/or storage disk
and to exclude propagating signals and to exclude transmis-
sion media. As used herein, “tangible computer readable stor-
age medium” and “tangible machine readable storage
medium” are used interchangeably. Additionally or alterna-
tively, the example processes of FIGS. 4-9 may be imple-
mented using coded instructions (e.g., computer and/or
machine readable instructions) stored on a non-transitory
computer and/or machine readable medium such as a hard
disk drive, a flash memory, a read-only memory, a compact
disk, a digital versatile disk, a cache, a random-access
memory and/or any other storage device or storage disk in
which information is stored for any duration (e.g., for
extended time periods, permanently, for brief instances, for
temporarily buffering, and/or for caching of the information).
As used herein, the term non-transitory computer readable
medium is expressly defined to include any type of computer
readable storage device and/or storage disk and to exclude
propagating signals and to exclude transmission media. As
used herein, when the phrase “at least” is used as the transition
term in a preamble of a claim, it is open-ended in the same
manner as the term “comprising” is open ended.

FIG. 4 is a flowchart representative of an example program
for the example dependency controller 140 to handle wait
requests. The example program of FIG. 4 begins at block 402
when the example wait request manager 202 receives a wait
request from a virtual machine. The example wait datastore
manager 204 for stores to wait request in a wait data store of
the example configuration repository 146 (block 404). In
response to the wait request, the wait request manager 202
queries the asset inventory via the example inventory man-
ager 206 for workloads that match the wait request to deter-
mine if a virtual machine asset that is responsive to the wait
request has been stored (block 406). If a match is not found
(block 408), control returns to continue querying the inven-
tory until a matching workload and/or virtual machine asset is
identified. For example, if the wait request indicates that a
database server is required to fulfill the wait request, the wait

10

15

20

25

30

35

40

45

50

55

60

65

12

request manager 202 queries the inventory manager for a
database server that belongs to a workload of the virtual
machine that issued the wait request.

If a matching virtual machine asset is located (block 408),
the example wait request manager 202 queries the depen-
dency database 142 for a notify request for the virtual
machine asset identified in the query of the inventory (block
410). For example, the notify request may be stored once the
identified virtual machine asset has successfully deployed
and/or sufficiently deployed to fulfill the wait request. When
a matching notify request is not found (block 412), control
returns to block 406 to continue waiting (e.g., the wait request
manager periodically retrieves pending wait requests via the
wait datastore manager 204 and checks for a matching asset
and notify request).

When a matching notify request is found (block 414), the
wait request manager 202 notifies the waiting virtual machine
deployment that the wait request has been fulfilled and that
deployment of the virtual machine may continue. The instruc-
tions of FIG. 4 are then complete.

FIG. 5 is a flowchart representative of an example program
for the dependency controller 140 to handle notify requests.
The example program of FIG. 5 begins at block 502 when the
notify request manager 208 receives a notify request. The
example notify datastore manager 210 stores the notify
request in a table of notify requests in the dependency data-
base 142 (block 504). Additionally or alternatively, the notify
data store manager 210 may notify the example request man-
ager 202 of the received notify request.

FIG. 6 is a flowchart representative of an example program
for the configuration controller to handle reports of new
assets. The example program of FIG. 6 begins at block 602
when the example asset receiver 302 receives a report of a
new asset from a virtual machine for which deployment has
been initiated. In response to the report of the new asset, the
information collector 304 of the illustrated example captures
asset information for the virtual machine (block 604). The
inventory interface 306 stores the asset information in the
example configuration repository 146 (block 606).

FIGS. 7-8 are flowcharts representative of example
machine readable instructions that may be executed during
provisioning of a virtual machine blueprint in accordance
with the methods and apparatus disclosed herein. The
example program of F1G. 7 begins at block 702 when deploy-
ment of the virtual machine is initiated and the virtual
machine transmits an asset tracking request to the example
asset notice receiver 302 of the example configuration con-
troller 144. The virtual machine begins installation and con-
figuration according to the tasks assigned to the virtual
machine deployment (block 704). For example, virtual
machines may be deployed and application binaries to be
installed on the virtual machines may be copied to the virtual
machines and installed. The virtual machine deployment
determines if a dependency trigger node has been reached in
the set of tasks for deployment (block 706). If a dependency
trigger node has not been reached, control proceeds to block
714.

If a dependency trigger has been reached (block 706), the
virtual machine sends a wait request to the example wait
request manager 202 of the example dependency controller
140 (block 708). The example wait request of the illustrated
example includes a timeout indicating a maximum duration
to wait before proceeding with provisioning. The example
wait request includes a key value that may be utilized to
identify a matching notify request that includes the same key
value. The wait request may additionally include other
parameters such as, for example, a name for an environment

US 9,361,335 B2

13

for the deployment, an identification of a choke file that may
be used to trigger the waiting to cease, the name of a user that
initiated the deployment, a profile name indicating a service
level for the deployment, an indication of whether a timeout
and/or choke file should cause an error to be issued or if
deployment should continue without error, etc.

After sending the wait request (block 708), deployment is
paused while the virtual machine awaits a response from the
example wait request manager 202 that a notify request cor-
responding to the wait request has been received (block 710).
When a notify request has been received (block 710), the
virtual machine deployment sends a pull request for configu-
ration information for the virtual machine dependency via the
configuration retriever 308 of the configuration controller 144
(block 712). Alternatively, the configuration retriever 308
may transmit the configuration information to the virtual
machine in response to the notify request without receiving a
pull request. Control then proceeds to block 714. Additionally
or alternatively, control may proceed to block 714 when a
manual request is received and/or when a timeout is reached.

After the virtual machine deployment pulls configuration
information (block 712) or the deployment determines that a
dependency trigger has not been reached (block 706), the
virtual machine deployment determines if deployment has
completed (block 714). If deployment has not completed,
control proceeds to block 706 and the deployment continues
until the next dependency trigger (block 706) and deployment
completes (block 714). If deployment has completed, the
instructions of FIG. 7 are complete.

The example program of FIG. 8 may be performed by the
deployed virtual machine, the deployment director 124, and/
or any other component that is responsible for deploying
virtual machines. The example program of FIG. 8 begins at
block 802 when deployment of the virtual machine is initiated
and the virtual machine transmits an asset tracking request to
the example asset notice receiver 302 of the example configu-
ration controller 144 of FIG. 3. The virtual machine begins
installation and configuration according to the tasks assigned
to the virtual machine deployment (e.g., the deployment
director 124 may initiate installation and configuration)
(block 804). The virtual machine deployment (e.g., the virtual
machine deployment plan causes the deployment director
124 to) determines if a notify trigger node has been reached in
the set of tasks for deployment (block 806). If a notify trigger
node has not been reached, control proceeds to block 812.

It a notify trigger has been reached (block 806), the virtual
machine sends a notify request to the example notify request
manager 208 of the example dependency controller 140
(block 808). The example notify request includes an identi-
fication of a key that corresponds to a key identified in a wait
request that is fulfilled by the notify request. The notify
request may additionally include a name of an environment
for the deployment, a name of a user that initiated the deploy-
ment, a name of a profile indicating a service level for the
deployment, etc. The virtual machine deployment (e.g., the
deployment plan causes the deployment director 124 to) then
pushes configuration information for the virtual machine to
the configuration repository 146 via the information collector
304 of the configuration controller 144 (block 810). Control
then proceeds to block 812.

After the virtual machine deployment pushes the configu-
ration information (block 810) or the deployment determines
that a notify trigger has not been reached (block 806), the
virtual machine deployment determines if deployment has
completed (block 812). If deployment has not completed,
control proceeds to block 806 and the deployment continues

5

10

15

20

25

30

35

40

45

50

55

60

65

14

until the next notity trigger (block 806) and deployment com-
pletes (block 812). If deployment has completed, the instruc-
tions of FIG. 8 are complete.

While the examples of FIGS. 7 and 8 illustrate instructions
in which virtual machine deployments check for either a
dependency trigger (FIG. 7) or a notify trigger (FIG. 8), a
single set of instructions may check for both dependency
triggers and notify triggers and virtual machines may include
one or both of dependency triggers and notify triggers.

FIG. 9 is a flowchart representative of example machine
readable instructions that may be executed to implement the
configuration controller 144 of FIGS. 1 and/or 3. The
example program of FIG. 9 begins at block 902 when the
example inventory user interface generator 310 of FIG. 3
receives a request to list the inventory. The example inventory
user interface generator 310 of FIG. 3 selects a first function
(e.g., a workload, a task name, etc.) from the example con-
figuration repository 146 (block 904). The example user inter-
face generator 310 of FIG. 3 retrieves virtual machine assets
that are tagged with the first function from the example con-
figuration repository 146 (block 906). For example, the inven-
tory user interface generator 310 may cause the example
inventory interface to send an LDAP request for virtual
machines associated with a first workload.

The example inventory user interface generator 310 of the
illustrated example displays the virtual machines identified at
block 906 under an identification of the first function (block
908). The example user interface generator 310 of FIG. 3 then
determines if additional functions are included in the configu-
ration repository 146 (block 910). If additional functions are
included in the configuration repository 146, the inventory
user interface generator 310 then selects the next function
(block 912) and control proceeds to block 906 to process the
next selected function. If there are no additional functions
(block 910), the instructions of FIG. 9 are complete.

In the foregoing examples, wait requests are sent by virtual
machines, notices that wait requests have been fulfilled are
sent to virtual machines, and notify requests are sent by
virtual machines. Additionally or alternatively, requests and/
or notifications may be sent to/by any other component. For
example, an application director managing the deployment of
virtual machine resources may send requests and/or receive
notifications that requests have been fulfilled.

FIG. 10 is a block diagram of example components of an
example implementation of the service manager 148 of FIG.
1. The example service manager 148 of this example includes
an example request receiver 1002, an example profile
retriever 1004, an example profile datastore 1006, an example
profile designer 1008, and an example service executor 1010.

The request receiver 1002 of the illustrated example
receives requests for information associated with a service
from a virtual machine during deployment. In the illustrated
example, the request includes an identification of a profile
assigned to the virtual machine deployment, which is trans-
mitted to the example profile retriever 1004. Alternatively, the
request may identify the virtual machine and/or a blueprint
for the virtual machine and the request receiver 1002 may
send the identification to the example profile retriever 1004 to
identify the profile assigned to the virtual machine based on
information stored in the example profile datastore 1006.

The profile retriever 1004 of the illustrated example
receives requests for profile information from the example
request receiver 1002 and queries the example profile datas-
tore 1006 for information to fulfill the requests. The example
profile retriever 1004 of FIG. 10 provides information about
the retrieved information to the example service executor
1010, which performs tasks on the virtual machine that sent

US 9,361,335 B2

15

the request using the retrieved information. For example, if a
virtual machine being deployed is associated with a mid-level
profile (e.g., a silver profile), the profile retriever 1004 of the
illustrated example may determine that the virtual machine is
to receive mid-level network service, mid-level storage ser-
vice, and a monitoring plugin. In such an example, the profile
retriever 1004 sends a notification of the mid-level services to
the example service executor 1010.

The profile datastore 1006 of the illustrated example stores
profile information for virtual machines that is designed via
the example profile designer 1008. The example profile infor-
mation links services, resources, plugins, etc. that are utilized
with virtual machines with profile levels. The example profile
information may additionally include information about
costs and resource utilization associated with the various
profile levels. The example profile datastore 1006 of FIG. 10
is implemented by a database. Alternatively, the profile datas-
tore 1006 may be implemented by any other type of data
storage. For example, the profile datastore 1006 may be
implemented by multiple databases, by one or more files,
and/or by any combination of data storage components.

The profile designer 1008 of the illustrated example pro-
vides an interface to facilitate user creation of and/or updating
of profiles. The example profile designer 1008 provides a
graphical user interface that receives input of a new profile
name and services, resources, and/or plugins to be assigned to
the new profile. The example profile designer 1008 may addi-
tionally receive input of cost information for profiles, security
and/or access information for profiles, etc. The profile
designer 1008 of this example stores the profile information
in the example profile datastore 1006.

The service executor 1010 of the illustrated example
receives profile information associated with a virtual machine
that sent a request to the example request receiver 1002 and
executes the tasks associated with the profile on the virtual
machine. The service executor 1010 may assign network
resources (e.g., attach the virtual machines to a particular
network, allocate access to network elements, etc.), may
assign storage resource, may configure security restrictions,
may install plugins in the virtual machines, and/or perform
any other task associated with the identified profile.

While an example manner of implementing the service
manager 148 of the cloud manager 138 is illustrated in FIGS.
1 and 10, one or more of the elements, processes and/or
devices illustrated in FIGS. 1 and 10 may be combined,
divided, re-arranged, omitted, eliminated and/or imple-
mented in any other way. Further, the example request
receiver 1002, the example profile retriever 1004, the
example profile designer 1008, the example service executor
1010 of FIG. 10 and/or the example service manager 148 may
be implemented by hardware, software, firmware and/or any
combination of hardware, software and/or firmware. Thus,
for example, any of the example request receiver 1002, the
example profile retriever 1004, the example profile designer
1008, the example service executor 1010 of FIG. 10 and/or
the example service manager 148 could be implemented by
one or more analog or digital circuit(s), logic circuits, pro-
grammable processor(s), application specific integrated cir-
cuit(s) (ASIC(s)), programmable logic device(s) (PLD(s))
and/or field programmable logic device(s) (FPLD(s)). When
reading any of the apparatus or system claims of this patent to
cover a purely software and/or firmware implementation, at
least one of the example request receiver 1002, the example
profile retriever 1004, the example profile designer 1008, the
example service executor 1010 of FIG. 10 and/or more gen-
erally the example service manager 148 is/are hereby
expressly defined to include a tangible computer readable

10

15

20

25

30

35

40

45

50

55

60

65

16

storage device or storage disk such as a memory, a digital
versatile disk (DVD), a compact disk (CD), a Blu-ray disk,
etc. storing the software and/or firmware. Further still, the
example cloud manager 138 and/or the example service man-
ager 148 of FIG. 1 may include one or more elements, pro-
cesses and/or devices in addition to, or instead of, those
illustrated in FIGS. 1 and 10, and/or may include more than
one of any or all of the illustrated elements, processes and
devices.

Flowcharts representative of example machine readable
instructions for implementing the cloud manager 138, and/or
the service manager 148 of FIGS. 1 and 10 are shown in FIGS.
11-12. In these examples, the machine readable instructions
comprise a program for execution by a processor such as the
processor 1712 shown in the example processor platform
1700 discussed below in connection with FIG. 17. The pro-
gram may be embodied in software stored on a tangible
computer readable storage medium such as a CD-ROM, a
floppy disk, a hard drive, a digital versatile disk (DVD), a
Blu-ray disk, or a memory associated with the processor
1712, but the entire program and/or parts thereof could alter-
natively be executed by a device other than the processor
1712 and/or embodied in firmware or dedicated hardware.
Further, although the example program is described with
reference to the flowchart illustrated in FIGS. 11-12, many
other methods of implementing the example cloud manager
138 and/or the example service manager 148 may alterna-
tively be used. For example, the order of execution of the
blocks may be changed, and/or some of the blocks described
may be changed, eliminated, or combined.

As mentioned above, the example processes of FIGS.
11-12 may be implemented using coded instructions (e.g.,
computer and/or machine readable instructions) stored on a
tangible computer readable storage medium such as a hard
disk drive, a flash memory, a read-only memory (ROM), a
compact disk (CD), a digital versatile disk (DVD), a cache, a
random-access memory (RAM) and/or any other storage
device or storage disk in which information is stored for any
duration (e.g., for extended time periods, permanently, for
brief instances, for temporarily buffering, and/or for caching
of'the information). Additionally or alternatively, the example
processes of FIGS. 11-12 may be implemented using coded
instructions (e.g., computer and/or machine readable instruc-
tions) stored on a non-transitory computer and/or machine
readable medium such as a hard disk drive, a flash memory, a
read-only memory, a compact disk, a digital versatile disk, a
cache, a random-access memory and/or any other storage
device or storage disk in which information is stored for any
duration (e.g., for extended time periods, permanently, for
brief instances, for temporarily buffering, and/or for caching
of the information).

The example program of FIG. 11 begins at block 1102
when the profile designer 1008 receives a request to create a
new profile. For example, the request to create the new profile
may include a name for the profile, cost parameters for the
profile, resource usage parameters for the profile, etc. The
example profile designer 1008 of the illustrated example
retrieves a list of tasks for provisioning a virtual machine
(block 1104). For example, the profile designer 1008 may
retrieve a network provisioning task, a storage provisioning
task, etc. The example profile designer 1008 maps services
for the profile with the provisioning tasks (block 1106). For
example, the profile designer 1008 may map a particular level
of'storage service to the storage provisioning task (e.g., a low
cost storage service may be mapped to a storage provisioning

US 9,361,335 B2

17

task in a low cost profile). The example profile datastore 1006
stores the assigned profile information in the profile datastore
1006 (block 1108).

The example program of FIG. 12 begins at block 1202
when the example request receiver 1002 receives a provision-
ing request for a virtual machine. The example request
receiver 1002 determines a selected profile for the virtual
machine (block 1204). For example, the request receiver
1002 may determine the selected profile based on an identi-
fication of the selected profile in the provisioning request
and/or by retrieving information about the selected profile
from the example profile datastore 1006. The example profile
retriever 1004 of the illustrated example retrieves a service for
a first task in the retrieved profile (block 1206). The example
service executor 1010 then executes the first task for the
service identified in the profile (block 1208). The profile
retriever 1004 determines if there are additional tasks to be
executed (block 1210). If there are additional tasks to be
executed, control returns to block 1206 to process next task. If
there are no additional tasks to be executed (block 1210), the
instructions of FIG. 12 are completed.

FIG. 13 illustrates a graphical user interface 1300 for cre-
ating a service level profile. The example graphical user inter-
face 1300 includes a listing of service level profiles 1302
(e.g., gold level profile, silver level profile, bronze level pro-
file, etc.). When a service level is selected in the listing of
service level profiles 1302 a list of available plugins 1304 is
displayed. When a plugin is selected from the list of available
plugins 1304, a list of services 1306 corresponding to the
selected plugin is displayed. The user managing the profiles
may then select a particular service to be associated with the
profile selected in the listing of service level profiles 1302.
Accordingly, a profile may be developed that includes a par-
ticular set of services such that a blueprint linked to the
service level profile may automatically be assigned the par-
ticular set of services without the need for creating separate
blueprints for each desired service level.

FIG. 14 illustrates an example graphical user interface
1400 for creating tasks to be included in service level profiles.
The example graphical user interface 1400 of FIG. 14
includes a listing of previously created task types 1402. New
task types may be added. When a task is selected from the
listing of previously created task types 1402, a listing of
available plugins 1404 is displayed. A user managing the
tasks may select a button 1406 to add additional plugins to the
select task type.

FIG. 15 illustrates an example graphical user interface
1500 for managing plugins for service level profiles. The
example graphical user interface 1500 of FIG. 15 includes a
listing of previously added plugins 1502. New plugins may be
added by importing a plugin description file. When a plugin is
selected from the listing of previously added plugins 1502, a
listing of service options 1504 associated with the selected
plugin is displayed.

FIG. 16 is illustrates an example graphical user interface
1600 that displays information about previously executed
tasks. The example graphical user interface 1600 of FIG. 16
includes a listing of information about previously executed
tasks 1602. The example graphical user interface 1600 of this
example also includes information about a deployment 1604
including information about the status of execution of plugins
associated with the deployment.

FIG. 17 is a block diagram of an example processor plat-
form 1700 capable of executing the instructions of FIGS. 4-9
and/or 11-12 to implement the example wait request manager
202, the example wait database manager 204, the example
inventory manager 206, the example notify request manager

35

40

45

55

18

208, the example notify datastore manager 210 of FIG. 2, the
example dependency controller 140, the example asset notice
receiver 302, the example information collector 304, the
example inventory interface 306, the example configuration
retriever 308, the example inventory user interface generator
310 of FIG. 3 and/or the example configuration controller 144
of FIGS. 1-3 and/or the example request receiver 1002, the
example profile retriever 1004, the example profile designer
1008, the example service executor 1010 of FIG. 10. The
processor platform 1700 can be, for example, a server or any
other type of computing device.

The processor platform 1700 of the illustrated example
includes a processor 1712. The processor 1712 of the illus-
trated example is hardware. For example, the processor 1712
can be implemented by one or more integrated circuits, logic
circuits, microprocessors or controllers from any desired
family or manufacturer.

The processor 1712 of the illustrated example includes a
local memory 1713 (e.g., a cache). The processor 1712 of the
illustrated example is in communication with a main memory
including a volatile memory 1714 and a non-volatile memory
1716 via a bus 1718. The volatile memory 1714 may be
implemented by Synchronous Dynamic Random Access
Memory (SDRAM), Dynamic Random Access Memory
(DRAM), RAMBUS Dynamic Random Access Memory
(RDRAM) and/or any other type of random access memory
device. The non-volatile memory 1716 may be implemented
by flash memory and/or any other desired type of memory
device. Access to the main memory 1714, 1716 is controlled
by a memory controller.

The processor platform 1700 of the illustrated example
also includes an interface circuit 1720. The interface circuit
1720 may be implemented by any type of interface standard,
such as an Ethernet interface, a universal serial bus (USB),
and/or a PCI express interface.

In the illustrated example, one or more input devices 1722
are connected to the interface circuit 1720. The input
device(s) 1722 permit(s) a user to enter data and commands
into the processor 1712. The input device(s) can be imple-
mented by, for example, an audio sensor, a microphone, a
camera (still or video), a keyboard, a button, a mouse, a
touchscreen, a track-pad, a trackball, isopoint and/or a voice
recognition system.

One or more output devices 1724 are also connected to the
interface circuit 1720 of the illustrated example. The output
devices 1724 can be implemented, for example, by display
devices (e.g., a light emitting diode (LED), an organic light
emitting diode (OLED), a liquid crystal display, a cathode ray
tube display (CRT), a touchscreen, a tactile output device, a
printer and/or speakers). The interface circuit 1720 of the
illustrated example, thus, typically includes a graphics driver
card, a graphics driver chip or a graphics driver processor.

The interface circuit 1720 of the illustrated example also
includes a communication device such as a transmitter, a
receiver, a transceiver, a modem and/or network interface
card to facilitate exchange of data with external machines
(e.g., computing devices of any kind) via a network 1726
(e.g., an Ethernet connection, a digital subscriber line (DSL),
a telephone line, coaxial cable, a cellular telephone system,
etc.).

The processor platform 1700 of the illustrated example
also includes one or more mass storage devices 1728 for
storing software and/or data. Examples of such mass storage
devices 1728 include floppy disk drives, hard drive disks,
compact disk drives, Blu-ray disk drives, RAID systems, and
digital versatile disk (DVD) drives.

The coded instructions 1732 of FIGS. 4-9 and 11-12 may
be stored in the mass storage device 1728, in the volatile

US 9,361,335 B2

19

memory 1714, in the non-volatile memory 1716, and/or on a
removable tangible computer readable storage medium such
asa CD or DVD.

While several graphical user interfaces are provided as
example interfaces for obtaining user input, any other type of
user interface and/or control may be provided (e.g., a com-
mand line interface, text based interface, slider, text box, etc.).
Additionally or alternatively, any of the methods and appara-
tus described herein may be accessed programmatically (e.g.,
using an API of the cloud manager 138 (e.g.,a vVCAC API)) by
another program or device.

Although certain example methods, apparatus and articles
of manufacture have been disclosed herein, the scope of cov-
erage of this patent is not limited thereto. On the contrary, this
patent covers all methods, apparatus and articles of manufac-
ture fairly falling within the scope of the claims of this patent.

What is claimed is:

1. An apparatus comprising:

a dependency controller to determine that a deployment
director has initiated deployment of a first virtual
machine and a second virtual machine and the deploy-
ment of the first virtual machine has halted because the
first virtual machine is dependent on a parameter of the
second virtual machine and to detect that the second
virtual machine has been deployed and has caused con-
figuration information to be stored in a repository; and

a configuration controller to retrieve the configuration
information, including the parameter, from the reposi-
tory and to transmit the parameter to the first virtual
machine to cause the first virtual machine to resume
deployment, at least one of the dependency controller
and the configuration controller including a processor.

2. An apparatus as defined in claim 1, wherein the reposi-
tory is a lightweight directory access protocol server.

3. An apparatus as defined in claim 1, wherein the configu-
ration controller includes a configuration retriever to receive
the configuration information by performing a lightweight
directory access protocol query.

4. An apparatus as defined in claim 1, wherein the configu-
ration controller includes an information collector to store the
configuration information in the repository in response to a
request from the second virtual machine received.

5. An apparatus as defined in claim 1, wherein the configu-
ration controller retrieves the configuration information in
response to a request for the parameter from the first virtual
machine.

6. An apparatus as defined in claim 1, wherein the param-
eter is a network address for the second virtual machine.

7. An apparatus as defined in claim 1, wherein the depen-
dency controller is to determine that the deployment of the
first virtual machine has halted in response to receiving a wait
request from the first virtual machine.

8. An apparatus as defined in claim 7, wherein the depen-
dency controller is to, in response to receiving the wait
request, query an inventory of virtual machines for a work-
load identified in the wait request to identify the second
virtual machine.

9. An apparatus as defined in claim 1, wherein the depen-
dency controller is to detect that the second virtual machine
has been deployed by querying a datastore for a notification
received from the second virtual machine.

10. An apparatus as defined in claim 1, wherein the depen-
dency controller is to detect that the second virtual machine
has been deployed in response to receiving a notify request
from the second virtual machine.

20

40

45

20

11. A method comprising:

initiating deployment of a first virtual machine and a sec-

ond virtual machine;
determining, by executing an instruction with a processor,
that the deployment of the first virtual machine has
halted because the first virtual machine is dependent on
a parameter of the second virtual machine;

detecting, via the processor, that the second virtual
machine has been deployed and has caused configura-
tion information to be stored in a repository;

retrieving, via the processor, the configuration informa-
tion, including the parameter, from the repository; and

transmitting, via the processor, the parameter to the first
virtual machine to cause the first virtual machine to
resume deployment.

12. A method as defined in claim 11, wherein the repository
is a lightweight directory access protocol server.

13. A method as defined in claim 11, wherein the retrieving
of'the configuration information includes performing a light-
weight directory access protocol query.

14. A method as defined in claim 11, further including
storing the configuration information in the repository in
response to a request from the second virtual machine.

15. A method as defined in claim 11, wherein the retrieving
of'the configuration information is responsive to a request for
the parameter from the first virtual machine.

16. A method as defined in claim 11, wherein the parameter
is a network address for the second virtual machine.

17. A method as defined in claim 11, wherein the deter-
mining that the deployment of the first virtual machine has
halted includes receiving a wait request from the first virtual
machine.

18. A method as defined in claim 17, further including, in
response to receiving the wait request, querying an inventory
of virtual machines for a workload identified in the wait
request to identify the second virtual machine.

19. A method as defined in claim 11, wherein the detecting
that the second virtual machine has been deployed includes
querying a datastore for a notification received from the sec-
ond virtual machine.

20. A method as defined in claim 11, wherein the detecting
that the second virtual machine has been deployed includes
receiving a notify request from the second virtual machine.

21. A tangible computer readable storage medium com-
prising instructions that, when executed, cause a machine to
at least:

initiate deployment of a first virtual machine and a second

virtual machine;

determine that the deployment of the first virtual machine

has halted because the first virtual machine is dependent
on a parameter of the second virtual machine;

detect that the second virtual machine has been deployed

and has caused configuration information to be stored in
a repository;

retrieve the configuration information, including the

parameter, from the repository; and

transmit the parameter to the first virtual machine to cause

the first virtual machine to resume deployment.

22. A tangible computer readable storage medium as
defined in claim 21, wherein the repository is a lightweight
directory access protocol server.

23. A tangible computer readable storage medium as
defined in claim 21, wherein the instructions, when executed
cause the machine to retrieve the configuration information
by performing a lightweight directory access protocol query.

24. A tangible computer readable storage medium as
defined in claim 21, wherein the instructions, when executed

US 9,361,335 B2

21

cause the machine to store the configuration information in
the repository in response to a request from the second virtual
machine.

25. A tangible computer readable storage medium as
defined in claim 21, wherein the instructions, when executed
cause the machine to retrieve the configuration information
responsive to a request for the parameter from the first virtual
machine.

26. A tangible computer readable storage medium as
defined in claim 21, wherein the parameter is a network
address for the second virtual machine.

27. A tangible computer readable storage medium as
defined in claim 21, wherein the instructions, when executed
cause the machine to determine that the deployment of the
first virtual machine has halted by receiving a wait request
from the first virtual machine.

28. A tangible computer readable storage medium as
defined in claim 27, wherein the instructions, when executed
cause the machine to, in response to receiving the wait
request, query an inventory of virtual machines for a work-
load identified in the wait request to identify the second
virtual machine.

29. A tangible computer readable storage medium as
defined in claim 21, wherein the instructions, when executed
cause the machine to detect that the second virtual machine
has been deployed by querying a datastore for a notification
received from the second virtual machine.

30. A tangible computer readable storage medium as
defined in claim 21, wherein the instructions, when executed
cause the machine to detect that the second virtual machine
has been deployed by receiving a notify request from the
second virtual machine.

#* #* #* #* #*

10

15

20

25

30

22

